Coordinate-space calculation of isospin breaking corrections to the hadronic vacuum polarization contribution to $(g-2)_{\mu}$

En-Hung Chao, Harvey Meyer, Julian Parrino

Lattice 2023, Chicago, August 1, 2023

1/18

Hadronic contributions to $(g-2)_{\mu}$

Fig. 1: Hadronic vacuum polarization (HVP) contribution

• $O(\alpha^2)$ contribution from hadronic vacuum polarization $\sim 700 \cdot 10^{-10}$, desirable accuracy $\sim 0.5\%$

- $O(\alpha^3)$ QED corrections become relevant
 - Understanding of tension between dispersive calculation of the HVP and lattice

Julian Parrino August 1, 2023 2 / 18

Hadronic contributions to $(g-2)_{\mu}$ at $O(\alpha^3)$

Fig. 2: Hadronic light-by-light scattering

Fig. 3: HVP at NLO

3/18

- HVP at NLO involes the same four-point function as HIbI $\langle j_{\mu}(z)j_{\nu}(y)j_{\rho}(x)j_{\sigma}(0)\rangle$
- Propose calculation of HVP at NLO similar to Mainz calculation of Hlbl [2210.12263]
- \bullet QED $_{\infty}$: Kernel is calculated analytically in the continuum in infinite volume

QED corrections to the HVP

$$a_{\mu}^{HVP,NLO} = -\frac{e^2}{2} \int_{x,y,z} H_{\mu\sigma}(z) \delta_{\nu\rho} \Big[G_0(y-x) \Big]_{\Lambda} \langle j_{\mu}(z) j_{\nu}(y) j_{\rho}(x) j_{\sigma}(0) \rangle$$
 (1)

- Covariant coordinate space (CCS) Kernel $H_{\mu\nu}(x) = -\delta_{\mu\nu}\mathcal{H}_1(|x|) + \frac{x_\mu x_\nu}{|x|^2}\mathcal{H}_2(|x|)$
 - Already successful calculation of LO HVP contribution to the window quantity a_{μ}^{W} in CCS formulation [2211.15581]
- With Pauli-Villars regularized photon propagator $\left[G_0(y-x)\right]_{\Lambda} = \frac{1}{4\pi^2|y-x|^2} \frac{\Lambda K_1(\Lambda|y-x|)}{4\pi^2|y-x|^2}$
- Two options to restore QED:
 - take the limit $\Lambda \to \infty$
 - Evaluate missing piece on the lattice with massive photon in QED_m
- No power law finite-size effects, idea proposed in [2209.02149]

Julian Parrino August 1, 2023

QED corrections to the HVP

- Successful crosscheck in QED between lattice calculation and infinite volume calculation
- Here we want to focus on (2+2) contributions in QCD with lattice data

Julian Parrino August 1, 2023

(2+2)a contribution

- UV finite, derived from operator product expansion
- Interpret as QED correction to leading order disconnected contribution

Fig. 4: leading order disconnected contribution contribution to $a_{\mu}^{HVP} \sim -(10 \sim 20) \cdot 10^{-10}$

6 / 18

Fig. 5: QED correction to disconnected contribution

(2+2)a contribution

- Requieres only calculation of 2-point functions
- \bullet Result is UV finite \to regulator can be dropped

$$a_{\mu}^{HVP,NLO} = -\frac{e^2}{2} 2C \int_{x,y,z} H_{\mu\sigma}(z) \delta_{\nu\rho} G_0(y-x) \hat{\Pi}_{\mu\nu}(z,x) \hat{\Pi}_{\rho\sigma}(y,0)$$
 (2)

with a chargefactor C (C=25/81 for light contribution) and 2-pt function

$$\Pi_{\mu\nu}(x,y) = -Re\Big(Tr\Big[S(y,x)\gamma_{\mu}S(x,y)\gamma_{\nu}\Big]\Big), \quad \hat{\Pi}_{\mu\nu}(x,y) = \Pi_{\mu\nu}(x,y) - \langle \Pi_{\mu\nu}(x,y)\rangle_{U} \quad (3)$$

 Julian Parrino
 August 1, 2023
 7 / 18

Strategy

- First step: Calculate quantity that is more short ranged
 - Subtracted vacuum polarization $\hat{\Pi}(Q_1^2, Q_2^2) = \Pi(Q_1^2) \Pi(Q_2^2)$

Calculate integrand

$$f(|x|) = -\frac{e^2}{2} 2C2\pi^2 |x|^3 \int_{y,z} \tilde{H}_{\mu\sigma}(Q_1, Q_2, z) \delta_{\nu\rho} G_0(y - x) \hat{\Pi}_{\mu\nu}(z, x) \hat{\Pi}_{\rho\sigma}(y, 0)$$
(4)

• Where $\hat{\Pi}(Q_1^2, Q_2^2)^{HVP, NLO} = \int_0^\infty f(|x|) d|x|$

Only CCS Kernel needs to be changed

• As consistency check, calculate with 2 version of the kernel \tilde{H}_{ug}^{TL} and \tilde{H}_{ug}^{XX}

Julian Parrino August 1, 2023

Strategy

$$f(|x|) = -\frac{e^2}{2} 2C2\pi^2 |x|^3 \int_{y,z} \tilde{H}_{\mu\sigma}(Q_1, Q_2, z) \delta_{\nu\rho} G_0(y - x) \hat{\Pi}_{\mu\nu}(z, x) \hat{\Pi}_{\rho\sigma}(y, 0)$$
 (5)

/ Id/	β	$\left(\frac{L}{a}\right)^3 \times \left(\frac{T}{a}\right)$	a [fm]	$m_{\pi} \; [{ m MeV}]$	m_K [MeV]	$m_{\pi}L$	<i>L</i> [fm]	confs
N203	3.55	$48^{3} \times 128$	0.06426	346(4)	442(5)	5.4	3.1	180

- With $N_f = 2 + 1$ dynamical flavors of non-perturbatively O(a) improved Wilson quarks and tree-level $O(a^2)$ improved Lüscher-Weisz gauge action
- Compute and save $\Pi_{\mu\nu}^{CL}(x,y)$ for all lattice points x and 24 different source positions y

Julian Parrino August 1, 2023

(2+2)a contribution to $\hat{\Pi}(Q_1^2, Q_2^2)$

Fig. 6: (2+2)a contribution to $\hat{\Pi}^{HVP,NLO}(1GeV^2,0.25GeV^2)$

- Good agreement between both kernels
- Compare with model of pseudoscalar meson exchange with VMD form factor
 - Use the corresponding parameters for π^0 and η on the given gauge ensemble
 - physical parameters for η'

Julian Parrino August 1, 2023 10 / 18

(2+2)a contribution to $a_{\mu}^{HVP,NLO}$

Fig. 7: (2+2)a contribution to $a_{\mu}^{HVP,NLO}$

- Choice of suitable kernel is important
- Total size of order 0.1% of leading order HVP,
 but: 5% - 10% of disconnected contribution to HVP

Julian Parrino August 1, 2023 11/18

(2+2)a contribution to $a_{\mu}^{HVP,NLO}$

	physical	$m_\pi=345{ m MeV}$	
	physical	$m_K = 441 \mathrm{MeV}$	
model π^0	-1.01	-0.68	
model η	0.22	0.15	
model η'	0.25	0.25(?)	
model combined	-0.54(2)	-0.28(1)	
H^{TL} (48 ³ × 128, $a = 0.06426$ fm)		-0.35(12)	
$H^{XX}/(48^3 \times 128, a = 0.06426 \text{fm})$		-0.34(16)	
/RBC/UKQCD	-6.9(2.1)(2.0)		
[1801.07224]	-0.9(2.1)(2.0)		
BMW (3+1 diagram included)	-0.55(15)(11)		
[2002/12347]	0.00(10)(11)		

Table: Results for (2+2)a contribution to $a_{\mu}^{HVP,NLO}$ in units of 10^{-10}

- The model describe the lattice data well at $m_\pi=345~{
 m MeV}$
- Only rough estimate on model uncertainty from fit to data
- (3+1) is UV divergent, can not be compared on its own

Julian Parrino August 1, 2023 12 / 18

(2+2)b contribution

Fig. 8: (2+2)b contribution to $a_{\mu}^{HVP,NLO}$

- ullet Need to keep regulator and use $\Lambda=3m_{\mu}$
- Can be computed using the same 2-pt functions
- Interpret as sea-quark effect on the leading order HVP
- Quantity is very long-ranged
 - We focus first on the intermediate window quantity a_{μ}^{W} , where long distance effects are suppressed

$$f(|x|) = -\frac{e^2}{2} 2C2\pi^2 |x|^3 \int_{\gamma,z} H_{\mu\sigma}^W(z) \delta_{\nu\rho} \Big[G_0(y-x) \Big]_{\Lambda} \hat{\Pi}_{\mu\sigma}(z,0) \hat{\Pi}_{\rho\nu}(y,x)$$
 (6)

 Julian Parrino
 August 1, 2023
 13 / 18

Comparison between both (2+2) diagrams for window quantity $a_{\mu}^{W,HVP,NLO}$

Fig. 9: (2+2)b contribution to $a_{ii}^{W,HVP,NLO}$

Fig. 10: (2+2)a contribution to $a_{\mu}^{W,HVP,NLO}$

14 / 18

• (2+2)b contribution to $a_{\mu}^{W,HVP,NLO}$ can be calculated with regulator Λ and is not negligible

Conclusion and Outlook

- Coordinate-space approach successful in calculating (2+2) disconnected contributions
- (2+2)a diagram can be compared in infinite volume and continuum limit
- Still much work to do for result of full $O(\alpha^3)$ hadronic corrections and also for calculation of strong isospin breaking effects

Julian Parrino August 1, 2023 15 / 18

Backup Slides

Pseudoscalar exchange model

$$f(|x|) = \int_{z,y} H_{\sigma\lambda}(z) \Big[G_0(x-y) \Big]_{\Lambda} \int_{q,k,p} e^{i(p\cdot z + q\cdot y + k\cdot x)} \Pi_{\sigma\mu\mu\lambda}(p,q,k)$$
 (7)

VMD form factor

$$\mathcal{F}(-p^2, -k^2) = \frac{c_{\pi}}{(p^2 + m_V^2)(k^2 + m_V^2)} \tag{8}$$

- Chargefactors (-25/9, 1, 1) for (π^0, η, η') respectively
- Use parameters for m_{π} and f_{π} on ensemble
- $m_\eta^2 \sim 4/3 m_K^2 1/3 m_\pi^2$ and f_η from linear interpolation between SU(3) symmetric and physical point
- Physical parameters for η'

Julian Parrino August 1, 2023

(2+2) Contribution

• Total (2+2) Contribution can be written as

$$a_{\mu}^{HVP,NLO} = -\frac{e^2}{2}C2\pi^2 \int d|x||x|^3 \Big[I^1(x)I^4(x) + 2I_{\rho\sigma}^2(x)I_{\sigma\rho}^3(x) \Big]$$
 (9)

$$I^{1}(x) = \int_{z} G_{PV}(\mu; x - z) \hat{\Pi}_{\nu\nu}(x, z)$$
 (10)

$$I_{\rho\sigma}^{2}(x) = \int_{y} G_{PV}(\mu; x - y) \hat{\Pi}_{\rho\sigma}(y, 0)$$
(11)

$$I_{\sigma\rho}^{3}(x) = \int_{z} H_{\nu\sigma}(z) \hat{\Pi}_{\nu\rho}(z,x)$$
 (12)

$$I^4(x) = \int_{Y} H_{\mu\sigma}(y) \hat{\Pi}_{\mu\sigma}(y,0)$$

(13)

Julian Parrino

August 1, 2023